best simple answer!
所在版块:求学狮城 发贴时间:2015-07-15 09:12

用户信息
复制本帖HTML代码
高亮: 今天贴 X 昨天贴 X 前天贴 X 
If a number is divisible by 3, and you remove any digit and it remains divisible by 3, then the digit that you removed must itself be divisible by 3. If there are no zeros, then the digit must be 3, 6, or 9. And since you can remove *any* digit and the result is still divisible by 3, that means *all* digits must be 3, 6, or 9. And there are 3 * 3 * 3 * 3, or 81, such numbers.

However, the original number isn't guaranteed to be divisible by 3 in the first place. So you also have to include the numbers that aren't divisible by 3 but any 3-digit number made by removing one of its digits is. This occurs when each digit is one greater than a multiple of 3 or when each digit is two greater than a multiple of 3. This means how many four-digit numbers exist such that each digit is a 1, 4, or 7, or each digit is a 2, 5, or 8. The answer for each is 3 * 3 * 3 * 3, or 81.

So the total number of 4-digit numbers that meet the condition is 81 + 81 + 81, or 243.
.
欢迎来到华新中文网,踊跃发帖是支持我们的最好方法!

 相关帖子 我要回复↙ ↗回到正文
【留学深造】一道中学竞赛题 spinach   (495 bytes , 1390reads )
楼上说只看那个three-digit的数字的肯定是在耍流氓 Fantasylx   (261 bytes , 50reads )
agree peterz   (0 bytes , 45reads )
说的我兴起了,出一个数学题目 dnegel   (139 bytes , 54reads )
是0咩 Fantasylx   (0 bytes , 49reads )
dnegel   (75 bytes , 58reads )
44100 spinach   (59 bytes , 47reads )
答出上个题目的请继续走 dnegel   (253 bytes , 59reads )
第一题简单,直接第二题走起 卡西法   (165 bytes , 85reads )
你的魔法是一流的 dnegel   (73 bytes , 51reads )
学业不佳,也不用再为出来之后找工作烦恼了 kevin5041   (286 bytes , 69reads )
初级数论 华生之友   (10 bytes , 75reads )
best simple answer! 华生之友   (967 bytes , 80reads )
感谢大家的回复 spinach   (14 bytes , 72reads )
这道题的陷阱 卡西法   (145 bytes , 73reads )
。。。。看到最后我愣是看傻了,楼主你一定是故意的 寻Q人   (0 bytes , 69reads )
还要包括 hua798   (42 bytes , 84reads )
wiggleY   (40 bytes , 98reads )
[147]{4} (i.e. [147][147][147][147]) and [258]{4} and [369]{4} 赶超美日   (0 bytes , 64reads )