这里好冷清,再出两个数学/物理题,活跃一下气氛
登录 | 论坛导航 -> 华新鲜事 -> 求学狮城 | 本帖共有 29 楼,当前显示第 12 楼 : 从楼主开始阅读 : 本帖树形列表 : 返回上一页
作者:大树下 (等级:3 - 略知一二,发帖:26) 发表:2008-06-19 15:35:39  12楼 
think in a 2nd wayworm speed is < the series of : .01 * ( 1 + 1/n + 1/n*(n-1) + 1/ n*(n-1)*(n-2) ... ) sum : .01 * ( n + 1+1/2 + 1/3 ... + 1/2 + 1/6 + 1/12 ... + 1/6+1/24+1/60 ... ... ) < .01 * ( n + ln(n) + (1-1/n) + (1-1/n)/3 + (1-1/n)/4 ... ) < .01 * ( n + ln(n) + (1-1/n) * ln(n) ) < n unless worm speed > 1. else will never catch up.
I don't know how do you derive that and what is n stand for
Probably you have misunderstanding in my question.

Apparently, as long as worm speed > 0, the speed of worm relative to ground is increasing at every time instance and approaching the string stretching speed. Since the increasing of worm speed will never stop until reaching string stretching speed, it will definitely catch up after some time.
欢迎来到华新中文网,踊跃发帖是支持我们的最好方法!原文 / 传统版 / WAP版只看此人从这里展开收起列表

本帖共有 29 楼,当前显示第 12 楼,本文还有 N-1 层楼,要不你试试看:点击此处阅读更多 >>



请登录后回复:帐号   密码