please explain your notation1。任意给定向量 K = [k1 k2 ... kn],如何确定MX的符号
how is K related to MX
2。对于向量 L = [l1(t) l2(t) ... ln(t)]T,其中ln(t)=ln1 x + ln2 (ln1, ln2是确定的实数),如何确定满足(1)的t的范围。
how is L related to equation (1), and what is T here?
3。一般情况,对于 M = [M1(t) M2(t) ... Mn(t)],其中 Mn(t)是关于的确定代数函数,如何确定满足(1)的t的范围。
please explain "Mn(t)是关于的确定代数函数"
Sorry... so many typos...
1. MX Should be KX
2. Substitute X with L, we get a group of linear inequations for t only. (Should be ln(t) = ln1 t + ln2). t is an real variable.
3. Mn(t) will be some function regarding to t but no longer polynomial or linear, like exp(t) + 2sin(t), or t^5 + ln(t)....
2. Substitute X with L, we get a group of linear inequations for t only. (Should be ln(t) = ln1 t + ln2). t is an real variable.
3. Mn(t) will be some function regarding to t but no longer polynomial or linear, like exp(t) + 2sin(t), or t^5 + ln(t)....
Yeah!