初级数论
登录 | 论坛导航 -> 华新鲜事 -> 求学狮城 | 本帖共有 2 楼,分 1 页, 当前显示第 1 页 : 本帖树形列表 : 刷新 : 返回上一页
<<始页  [1]  末页>>
作者:华生之友 (等级:5 - 略有小成,发帖:4366) 发表:2015-07-15 09:06:11  楼主  关注此帖
【留学深造】一道中学竞赛题2012 Australian Mathematics Competition Junior Q27   How many four-digit numbers containing no zeros have the property that whenever any one of its four digits is removed, the resulting three-digit number is divisible by 3?    我是这么想的,如果是任意删除一位数字,余下的部分还能被3整除,那么只能是3,6,9这几个数   ABCD 四位数,每次都有3种选择,所以 3 x 3 x 3 x 3 = 81    可答案是243,想不明白,望高人指点    该帖荣获当日十大第8,奖励楼主4分以及6华新币,时间:2015-07-15 22:00:03。 (more...)
初级数论
向玛丽致敬
欢迎来到华新中文网,踊跃发帖是支持我们的最好方法!原文 / 传统版 / WAP版所有回复从这里展开收起列表
作者:华生之友 (等级:5 - 略有小成,发帖:4366) 发表:2015-07-15 09:12:03  2楼
初级数论向玛丽致敬
best simple answer!
If a number is divisible by 3, and you remove any digit and it remains divisible by 3, then the digit that you removed must itself be divisible by 3. If there are no zeros, then the digit must be 3, 6, or 9. And since you can remove *any* digit and the result is still divisible by 3, that means *all* digits must be 3, 6, or 9. And there are 3 * 3 * 3 * 3, or 81, such numbers.

However, the original number isn't guaranteed to be divisible by 3 in the first place. So you also have to include the numbers that aren't divisible by 3 but any 3-digit number made by removing one of its digits is. This occurs when each digit is one greater than a multiple of 3 or when each digit is two greater than a multiple of 3. This means how many four-digit numbers exist such that each digit is a 1, 4, or 7, or each digit is a 2, 5, or 8. The answer for each is 3 * 3 * 3 * 3, or 81.

So the total number of 4-digit numbers that meet the condition is 81 + 81 + 81, or 243.
欢迎来到华新中文网,踊跃发帖是支持我们的最好方法!原文 / 传统版 / WAP版所有回复从这里展开收起列表
论坛导航 -> 华新鲜事 -> 求学狮城 | 返回上一页 | 本主题共有 2 篇文章,分 1 页, 当前显示第 1 页 | 回到顶部
<<始页  [1]  末页>>

请登录后回复:帐号   密码