求解一道高中概率题小A与小B约好早晨在咖啡店见面.两人到达咖啡店的时间均为10am-11am.
且每人最多只等对方20分钟,求两人成功碰面的概率是多少?
记得好像用面积法做,具体忘了。。[kim (2-20 15:29, Long long ago)]
[ 传统版 |
sForum ][登录后回复]1楼
[求助]求助[kim (2-20 15:30, Long long ago)] [ 传统版 | sForum ][登录后回复]2楼
(引用 kim:[求助]求助)偶觉得是2/3,不知对不对[thunder (2-20 18:01, Long long ago)] [ 传统版 | sForum ][登录后回复]3楼
(引用 thunder:偶觉得是2/3,不知对不对)是1/3, 2/3 是碰不着[thunder (2-20 18:06, Long long ago)] [ 传统版 | sForum ][登录后回复]4楼
(引用 thunder:是1/3, 2/3 是碰不着)好像是4/9[thunder (2-20 18:21, Long long ago)] [ 传统版 | sForum ][登录后回复]5楼
什么分布? [icky (2-20 20:37, Long long ago)] [ 传统版 | sForum ][登录后回复]6楼
(引用 icky:什么分布? )如果是uniform distribution的话这道题就成这个问题
x1 and x2 follows uniform distribution U[0,1]
what is the probability that |x1-x2|>1/3?
case a:
0<=x1<1/3
then as long as x2<=x1+(1/3), |x1-x2|>1/3
so the probability is x1+(1/3)
case b:
1/3<=x1<2/3
then as long as x1-(1/3)<=x2<=x1+(1/3)
so the probability is 2/3
case c:
2/3<=x1<=1
similar to case a
probability is (4/3)-x1
then integrate all the probability, we get 5/9
if we use area method, consider (x1, x2) as a point in square [0,1]^2
then |x1-x2|<1/3 is bounded by two lines, x1-x2<1/3 and x2-x1<1/3
by subtracting the two triangles, the area between the lines is 5/9
done.[icky (2-20 20:53, Long long ago)]
[ 传统版 |
sForum ][登录后回复]7楼
If the density function is fa(t) and fb(t) where 10<=t<=11then the answer is a double integral on fa and fb
\int\int|ta-tb|<1/3 {f(ta)*f(tb)} dta dtb
use two step integral to do it
[simon (2-20 21:53, Long long ago)]
[ 传统版 |
sForum ][登录后回复]8楼
(引用 simon:If the density function is fa(t) and fb(t) where 10...)Is it?Suppose change the waiting time to 40 min and two person's arrival time follows uniform distribution, e.g.
f(x) = 1 (10 < x < 11)
f(y) = 1 (10 < y < 11)
Then you answer will be
\int_{10}^{11}\int_{y-2/3}^{y+2/3) 1 dx dy
= 4/3
??[香陵居士 (2-21 0:00, Long long ago)]
[ 传统版 |
sForum ][登录后回复]9楼
(引用 simon:If the density function is fa(t) and fb(t) where 10...)simon是这个意思\int_{0}^{1}\int_{max(0, x-1/3)}^{min(1, x+1/3)}f(x)*f(y)dydx
华新不支持latex encoding,大家写出来看,_{}表示subscript,^{}表示superscript[icky (2-21 0:12, Long long ago)]
[ 传统版 |
sForum ][登录后回复]10楼
(引用 icky:simon是这个意思\int_{0}^{1}\int_{max(0, x-1/3)}^{min(1, x+1/3)}f(x)*f(y)dydx 华新不支持latex encoding,大家写出来看,_{}表示sub...)有跟错贴了,这一贴跟香陵的 [icky (2-21 0:13, Long long ago)] [ 传统版 | sForum ][登录后回复]11楼
5/9能遇到,算法小A在第n分钟到达
n<=20
p=(n+20)/60
20<n<40
p=2/3
n>=40
p=(60-n+20)/60
画图是这样的
p
│
│ / ̄ ̄\
│/ \
│
└─────min
0 20 40 60
[帅温柔 (2-21 2:47, Long long ago)]
[ 传统版 |
sForum ][登录后回复]12楼
坐标里画个正方形,60x60。左上,右下两个40x40的直角三角形是不能见面的时间。
不能见面的概率 = (40x40) / (60x60) = 4/9[吴永铮 (2-21 13:47, Long long ago)]
[ 传统版 |
sForum ][登录后回复]13楼
(引用 kim:[求助]求助)谢谢!!谢谢各位[kim (2-21 20:52, Long long ago)] [ 传统版 | sForum ][登录后回复]14楼
(引用 thunder:好像是4/9)谢谢各位可惜答案忘了[kim (2-21 20:56, Long long ago)] [ 传统版 | sForum ][登录后回复]15楼
(引用 吴永铮:坐标里画个正方形,60x60。左上,右下两个40x40的直角三角形是不能见面的时间。 不能见面的概率 = (40x40) / (60x60) = 4/9)x,y轴什么意义?线性规划?[kim (2-21 21:11, Long long ago)] [ 传统版 | sForum ][登录后回复]16楼
(引用 kim:x,y轴什么意义?线性规划?)the arrival time of a and b[simon (2-21 23:13, Long long ago)] [ 传统版 | sForum ][登录后回复]17楼
5/9吗?不会面积法,分三个二十分钟,从一个人的角度考虑.不过不知道对不对.
头二十分钟是1/3*1/3
第二个是1/3*2/3
最后也是1/3*2/3
[ursualr (2-23 13:58, Long long ago)]
[ 传统版 |
sForum ][登录后回复]18楼
(引用 kim:谢谢各位可惜答案忘了)[答案]4/9假设两人到的时间X, Y是uniform distribution and independent. 可对让人不能相遇的概率进行分析。
可分为三种情况进行讨论:
当X <= 20, Y > x + 20, 让人不可相遇。P(Y > x + 20, X = x) = 1/60(40-x).
当20 < X <= 40,Y > x + 20 or Y < x-20 良人不可相遇。P(...) = 1/3;
当40 < X <= 60,Y < x-20 良人不可相遇。 P(...)=1/60(x-20);
最后可以得出两人不相遇的概率是5/9。答案为4/9[鸣人 (2-26 2:27, Long long ago)]
[ 传统版 |
sForum ][登录后回复]19楼